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Abstract
In this contribution a generalized method for spectral

refinement (GSR) is presented which is applied as a post-
processing stage after a conventional frequency analysis of
speech signals. The principle idea of GSR is to refine each
subband signal after a frequency decomposition individually
and to compute additional frequency supporting points in
between using a linear combination of a the current as well
preceding and successive short-term spectra. For its efficient
implementation a simplification of the GSR method is derived
– it can shown that the refinement can easily be implemen-
ted using short FIR-filters in each subband. This results in
a very low computational complexity. The proposed method
has been applied as a pre-processing stage for fundamental
frequency estimation as well as for echo cancellation. Eva-
luations have shown that pitch frequency estimation methods
can significantly be improved for all SNR considered when
employing GSR method. Echo cancellation experiments con-
firm that GSR can enhance the performance by means of
improved steady-state convergence.

Keywords Pitch frequency, echo cancellation, filterbank,
spectral refinement, higher resolution, speech enhancement

1. INTRODUCTION

In different applications such as hands-free telephony or
speech dialogue within a car, the desired speech signal is
disturbed by the background noise (engine, wind noise, etc.).
In order to reduce the disturbing components (while keeping
the speech signal as natural as possible) speech enhancement
algorithms are utilized. Most often enhancement algorithms
like noise reduction or echo cancellation are applied in the
subband domain to reduce computational complexity and to
achieve fast convergence for adaptive filters [8, 9]. The mi-
crophone signal is usually first segmented into overlapping
blocks of appropriate size (20 − 30 ms) and subsequently
weighted with a window function. Afterwards, the windo-
wed signal frames are transformed into the frequency domain
using a DFT. The obtained short-term spectrum (STS) can
be employed for estimating the power spectral density of the
background noise which is required, e.g., for noise reducti-
on. After several signal processing stages the enhanced STS
is converted back to the time domain using an inverse DFT.

The resulting overlapped signal blocks are added to obtain the
broadband output signal. This type of overlap-add based sche-
me is also known as a DFT-modulated not-critically-sampled
filterbank.

For the window often a Hann function is applied which on
the one hand allows for an appropriately chosen subsampling
factor (also known as frameshift) a perfect reconstructionat
the output. On the other hand it shows good aliasing proper-
ties which is important for adaptive subband filters such as
echo cancellation. However, windowing of successive signal
blocks has most often the negative effect, that a significant
frequency overlap of adjacent DFT subbands arises. Thus, ad-
jacent fundamental frequency trajectories are sometimes hard
to separate which is important for speech enhancement sche-
mes that involve fundamental frequency estimation. In additi-
on, aliasing components that appear due to large subsampling
factors can remarkably degrade the convergence behavior of
the echo cancellation schemes[5].

Increasing the DFT order to reduce the spectral overlap
and the aliasing effects one should consider that for hands-
free telephone systems several restrictions have to be fulfilled:
the tolerable front-end delay of a hands-free system connec-
ted to a GSM network should not exceed 39 ms [6]. However,
increasing e.g. the DFT order fromN =256 to N =512 at
a sampling frequency offs=11025 Hz results in a delay of
approx. 46 ms in the signal path, which doesn’t fulfill ITU
and ETSI recommendation. To overcome this, the herein pro-
posed method for SR can be utilized. It is applied as a linear
combination of a few weighted subband signal vectors at the
output of a DFT.

The contribution is organized as follows: First, a brief
overview about conventional methods will be given. After-
wards, the novel generalized method for SR as well as com-
putational efficient approximations will be presented. In the
next section applications of SR by means of improving funda-
mental frequency estimation schemes and echo cancellation
systems are shown. The paper concludes with some simulati-
on results and a conclusion.

2. CONVENTIONAL METHODS

To enhance the frequency selectivity of DFT-modulated fil-
terbanks, they can be extended to a so-called non-critically
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subsampled polyphase filterbanks [3]. In this case the length
of the analysis and synthesis window functions are allowed to
be larger than the number of used subbands (determined by
the DFT orderN ). A polyphase filterbank introduces much
lower aliasing components and the computational complexi-
ty is only increased marginally. As a consequence a frames-
hift close to the DFT order can be selected (depending on the
used length of the prototype filters). In the literature (e.g. [16])
design procedures are described that achieve a frameshift of
about3/4N using filter orders of about6− 8N . While a po-
lyphase filterbank is able to reduces the computational com-
plexity for large frameshifts one the one hand it also increases
significantly the delay. Unfortunately, a high delay is veryun-
desirable for applications such as hands-free telephony.

In [5] critically subsampled systems have been investiga-
ted. It was suggested to use adaptive cross filters in order to
explicitly cancel the aliasing components. The consequences
of using such cross filters lies in increasing the computational
complexity significantly and it has been found to have proble-
matic convergence speed.

In [12] a delayless structure has been proposed where ad-
aptive filter weights are computed in the subband domain and
then transformed to an equivalent time-domain filter. With
this structure the filtering operation is performed in the time
domain. A similar technique was developed in [2] and [15]
for an acoustic echo canceller whereas the adaptive proces-
sing part takes place in the frequency domain. However, all
mentioned time-domain based filtering approaches have the
consequences of higher computation complexity. Also, mixed
schemes (the first part of the impulse response is convolved in
the time domain, the remaining part in the subband domain)
have been published by various authors.

The [13] the authors addressed the issues of computatio-
nal complexity and delay of subband adaptive filtering for ap-
plications of acoustic echo control. It has been suggested to
use filterbanks based on allpass polyphase IIR structure as an
alternative to the FIR based filterbanks. The use of allpass
polyphase IIR filter banks achieve very high sidelobe atte-
nuation and it has been shown to be computational efficient
while keeping the aliasing components low. It has to be no-
ticed that with this approach non-linear phase distortionsand
appearance of narrowband high energy aliasing terms at the
filter boundaries arise.

In [7] an efficient prototype filter design method for an
oversampled DFT filterbank has been proposed where the ali-
asing components are minimized while the total filterbank
group delay is pre-specified. It could be shown that the esti-
mation accuracy for non-critical decimated filterbanks is clo-
se to the fullband solution and significantly better than forthe
critically decimated case.

In contrast to the state-of-the-art approaches, the herein
proposed method for GSR is employed as a post-processor
for analysis filterbanks. The enhanced frequency selectivity of

the analysis is achieved either by reducing the spectral overlap
of adjacent subbands or by computing additional subbands.
The refinement procedure can easily be implemented using
short FIR filters in each subband channel – this results in a
very low computational complexity and an insignificant addi-
tional delay in the signal path.

3. GENERALIZED SPECTRAL REFINEMENT

In contrast to the contribution in [11] a generalized method
for spectral refinement method will be derived in the follo-
wing which is applied afterwards to enhance pitch frequency
estimation and to improve the performance of echo cancella-
tion. For the derivation of the generalized spectral refinement
(GSR) method a basic DFT of orderN and an increased DFT
of order

Ñ = N + k0 r with k0 ∈
{
1, 2, 3, . . .

}
(1)

are assumed, whereasr corresponds to the used subsampling
factor. All quantities in this contribution that characterize a
high order will be designated with a tilde symbol. As input
we define an overlapped and windowed input signal frame of
a low orderN as well as of a high order̃N . Applying DFTs to
the weighted input signal vectors result inN andÑ frequency
supporting points of the short-term spectra:

Y
(
ejΩµ, n

)
=

N−1∑

k=0

y(nr − k)hk e
−jΩµk , (2)

Ỹ
(
ejΩ̃µ̃, n

)
=

Ñ−1∑

k=0

ỹ(nr − k) h̃
(µ̃)
k e−jΩ̃µ̃k , (3)

whereas the parametersn andhk characterize the frame in-
dex and the chosen window function respectively (Eqn. (2)
and (3) can also be interpreted as subband signals of an ana-
lysis filterbank). Note that for calculating the refined short-
term spectrum̃Y (ejΩ̃µ̃, n) individual window functions̃h(µ̃)

k

are utilized. This is specified in order to allow different sub-
band filters within a filterbank. The used frequency suppor-
ting pointsΩµ andΩ̃µ̃ are equidistantly distributed over the
normalized frequency range:

Ωµ =
2π

N
µ with µ ∈

{
0, . . . , N − 1

}
and (4)

Ω̃µ̃ =
2π

Ñ
µ̃ with µ̃ ∈

{
0, . . . , Ñ − 1

}
. (5)

For the sake of simplicity the short-term spectraY (ejΩµ, n)

andỸ (ejΩ̃µ̃, n) will be rewritten in matrix-vector notation:

Y
(
ejΩ, n

)
= DH y(n) , (6)

Ỹ
(
ejΩ̃, n

)
= P (Ñ) D̃Block H̃Block I

(Ñ) ỹ(n) . (7)
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The quantityD characterize a DFT matrix of orderN andH
denotes a diagonal matrix which consists of window function
coefficients according to:

H = diag{h0, h1, . . . , hN−1} (8)

=




h0 0 0 0
0 h1 0 0

0 0
. . . 0

0 0 0 hN−1


 .

To formulate the higher resolution STS from Eq. (3) in
matrix-vector notation the input signal is duplicatedÑ -times.
This is done by multiplying the input vector̃y(n) with a
so-calledblock unit matrixdefined as:

I(Ñ) =
[
I
(Ñ)
0 , I

(Ñ)
1 , . . . , I

(Ñ)

Ñ−1

]T
, (9)

whereas each element characterizes an identity matrix:I(Ñ)
µ =

diag{1} of size Ñ . The resulting vectors are subsequently
multiplied by a block-diagonal window matrix:

H̃Block = diag
{

H̃0, H̃1, . . . , H̃Ñ−1

}
, (10)

with

H̃µ = diag
{

h̃
(µ)
0 , h̃

(µ)
1 , . . . , h̃

(µ)

Ñ−1

}
. (11)

Afterwards, a DFT is performed for each weighted input si-
gnal vector. This is accomplished by using a block-diagonal
DFT matrixD̃Block according to

D̃Block = diag
{

D̃0, D̃1, . . . , D̃Ñ−1

}
, (12)

whereas the diagonal elements of Eq. (12) specify DFT matri-
ces of orderÑ . Once the DFT matrices are applied to indivi-
dual weighted input signal segments a vector (of lenghtÑÑ )
results. The vector contains̃N short-term spectra. Thus, the
outcome represents the short-term spectra of the current si-
gnal frame weighted with̃N individual window functions.

Finally, a so-calledselection matrixP (Ñ) (of dimension
ÑxÑÑ ) is multiplied with the short-term spectra in order to
select the desired output subband signalsỸ(ejΩ̃µ̃, n). These-
lection matrixis defined as

P (Ñ) =
[
P

(Ñ)
0 , P

(Ñ)
1 , · · · , P

(Ñ)

Ñ−1

]
. (13)

Each element of Eq. (13) characterizes a diagonal matrix of
orderÑ defined as:

P (Ñ)
µ = diag

{
pµ,0, pµ,1, . . . , pµ,Ñ−1

}
. (14)

The elementspµ,i from Eq. 14 have to fulfill the following
condition:

pµ,i =

{
1 , if i = µ ,

0 , else.
(15)

Once we have formulated the vector-matrix notation of the
short-term spectra using a basic and increased DFT of order
N andÑ , respectively, the next step will be the derivation of a
general solution for spectral refinement. The principle idea of
the GSR method is to determine a refined STS,Ỹ

(
ejΩ, n

)
, by

using the current spectrumY
(
ejΩ, n

)
and a number of time-

delayed spectraY
(
ejΩ, n− k

)
of lower orderN without the

need for an additional DFT of higher order̃N :

S




Y
(
ejΩ, n

)
...

Y
(
ejΩ, n− (M − 1)

)


 = Ỹ

(
ejΩ̃, n

)
. (16)

The matrixS refers to the SR matrix with a dimension of
Ñ xNM , whereasM is the number of the input spectra each
shifted by a frameshift ofr samples. It is assumed that the
lower order STSsY

(
ejΩ, n

)
are already available. The might

be used, e.g., to estimate the noise power for speech enhance-
ment within a hands-free system. However, in some situations
it is desired to determine a higher resolution STS in order to
enhance feature extractions schemes such as pitch frequen-
cy estimation. For that purpose we suggest to apply a linear
combination of the lower order short-term spectra as stated
in Eq. (16). The derivation of the generalized SR matrixS as
well as its simplified version will be explained in the followi-
ng.

3.1. Determining the Spectral Refinement Matrix

Before calculating the SR matrixS a constraint for the higher
order window functions̃hµ is introduced:

A(µ̃) [h, h, ..., h]
T

= h̃
(µ̃)

. (17)

This allows for an efficient implementation – as we will see
later on. The matrixA(µ̃) of sizeÑ xMN consists of appro-
priate weightsa(µ̃,m)

k with k ∈ [0, N−1] andm ∈ [0,M−1].
The structure of the matrix is shown in Eq. (18).

The main task ofA(µ̃) is to weightM window functi-
ons of lower orderN and shift subsequently adjacent win-
dow functions by the chosen subsampling factorr. The so-
obtained modified window functions were summed up to ob-
tain a desired higher order window function. Consequently,
the window functions̃h

(µ̃)
consists of a weighted sum of shif-

ted window functionsh. The coefficientsa(µ̃)

k,m can be desi-
gned in such a way that a set of low-order window functions
are transformed into a desired window function of higher or-
der. The resulting order of the window functioñh

(µ̃)
from

Eq. 17 is given by:

Ñ = N + r (M − 1) . (19)

In the upper part of Fig. 1 an example of weighted and shif-
ted Hann-windows each of lower order (dashed lines with
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A(µ̃) =




a(µ̃,0)
0 · · · 0 · · · 0 · · · 0

. . . . .
. ... . .

. ... . .
. ...

a(µ̃,0)
r−1 a(µ̃,1)

0
. . .

. . . · · ·
a(µ̃,0)

N−r−1 a(µ̃,1)
r−1 a(µ̃,M−1)

0
. . .

. . .
. . .

a(µ̃,0)

N−1 a(µ̃,1)

N−r−1 a(µ̃,M−1)
r−1

. . .
. . .

a(µ̃,1)

N−1 a(µ̃,M−1)

N−1−r... . .
. ... . .

. ... . .
. . . .

0 · · · 0 · · · 0 · · · a(µ̃,M−1)

N−1




.(18)

N = 256, M = 5, r = 64) as well as the resulting win-
dow function of higher order (solid line with̃N = 512) is
shown. The coefficients used for weighting the window func-
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Fig. 1. Upper part shows the weighted and shifted Hann-
windows and the resulting window function, lower part de-
picts the corresponding spectra.

tions have been chosen as follows:a(0)

k = a(M−1)

k = 0.3K0,
a(1)

k = a(M−2)

k = 0.7K0 anda((M−1)/2)

k = K0.1 As normali-
zation constantK0 = 3 has been applied. In the lower part of
Fig. 1 the corresponding analyses of the short-term spectraare
depicted. By comparing the results one can see that the main
lobe width as well as the side-lobe amplitudes are reduced
when using the weighted sum of shifted window functionsh.

Once the constraint for the window functions is defined,
the next step will be the solve the equation system for the SR
matrixS. By doing so first Eq. (16) is rewritten as follows:

SDBlock HBlockY (n) = Ỹ
(
ejΩ̃, n

)
. (20)

The vectorỸ (n) consists of the current input signal frame as

1For the sake of simplicity the superscript parameterµ has been omitted.

well as of the delayed ones each of lower orderN :

Y (n) =
[
y(nr), . . . ,y

(
nr − (M − 1)

)]T
. (21)

The quantitiesHBlock andDBlock characterizeblock-diagonal
matrices of the lower order window function and the DFT.
Using the above mentioned constraint (Eq. 17), the higher re-
solution STS from Eq. 7 can be expressed as follows:

Ỹ
(
ejΩ̃, n

)
= P (Ñ) D̃Block A

(µ̃) I(ÑM)HBlock Y (n) . (22)

Theblock-unit matrixI(ÑM) comprisesN identity matrices
each of sizeNM (analogue to Eq. 9).

Inserting the expression from Eq. 22 in Eq. 20 results in
several solutions for the matrixS, that depend in general on
the input signal vectorsy(n−m). A Solution that is indepen-
dent of the input signal can be obtained by:

S = P (Ñ)D̃Block A
(µ̃) I(ÑM)D−1

Block . (23)

After inserting the definitions of the matrices in Eq. 23 the SR
matrixS can finally be rewritten in the following way:

Si,mN+l (24)

=
1

N

Ñ−1∑

µ=0

Ñ−1∑

z=0

Pi,z+µÑ

N−1∑

k=0

e−j 2π

Ñ
z(k+mr) a

(µ̃,m)
k ej

2π
N kl .

The parameteri in Eq. 24 specifies the row and the quantity
mN + l the column of the SR matrix.

4. SIMPLIFIED VERSION OF SPECTRAL
REFINEMENT

Once the general solution for the SR matrix was formulated
it is now checked due to sparsely population in the following.
In doing so, first it is assumed that the weighting coefficients
for eachm-th window function are identical, meaning that
a
(µ̃,m)
k = a(µ̃,m). In order to analyse the SR matrix quantita-

tively, the formulation of Eq. 24 is rewritten as follows:

Si,mN+l =
a(i,m)

N
e−j 2π

Ñ
imr

N−1∑

k=0

e−j2π
(

i

Ñ
− l

N

)
k . (25)
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Further on, the geometric series on the left hand side of Eq. 25
can be dissolved in the following way:

Si,mN+l =
a(i,m)

N

sin
(
π
(
iN−lÑ

Ñ

))
e−jπ

(
iN−lÑ

Ñ

)

sin
(
π
(
iN−lÑ

NÑ

))
e−jπ

(
iN−lÑ

NÑ

) e−j 2π

Ñ
imr.

(26)

If the condition holds, that the higher filter order is a multiple
of the lower filter order:̃N = k̃0 N with k̃0 ∈ {2, 3, . . .}, then
specific rows and columns of the SR matrix can be further
simplified to:

Si,mN+l =





0 , if
(

i

k̃0
∈ Z

)
∧
(
l 6= i

k̃0

)
,

a(i,m) e−j 2π

Ñ
imr , if

(
i

k̃0
∈ Z

)
∧
(
l = i

k̃0

)
,

Si,mN+l , else.
(27)

The symbolZ denotes the set of integers. Thus, eachk̃th
0 row

of S is sparsely populated, i.e., the elements of eachk̃th
0 row

are zero except of the column indices that are multiples ofN .
Furthermore, if the filter orderN is chosen to be a multiple
of the used frameshift, e.g.2 r or 4 r, then those elements of
the sparsely populated rows of the SR matrix are either real
or imaginary.

For illustration purposes a simple example of the SR ma-
trix is shown in Fig. 2 withM = 3, r = 2, andN = 4.
As a result, each second row (even indices of the SR matrix)

Spectral refinement matrix in dB

Columns

R
o
w

s

Fig. 2. SR matrix: White color indicate values equal zero and
black elements values unequal zero.

is sparsely populated. The elements in white color indicate
values equal zero, whereas the ones in black values unequal
zero. However, these rows are related to that frequency sup-
porting points, which would be computed with a basic DFT
of orderN as well as with a higher order DFT of̃N .

4.1. Realization of spectral refinement

The proposed method for spectral refinement can either be
applied to refine only the original frequency resolution of the

input signal or to compute additional frequency supporting
points in between:

4.1.1. Refinement of the original frequency resolution

If it is desired to calculate a spectral refinement of the origi-
nal frequency resolution – i.e., eachk̃th

0 frequency supporting

point of the vector̃Y (ejΩ̃µ , n) is refined – the realization of
the spectral refinement can be performed in a efficient and re-
liable manner. Due to the sparsely population of the matrix
S the SR can be realized by short FIR-filters applied in each
subband after the frequency decomposition of the input signal
y(n). The FIR filter coefficients

gi,i·k̃0
=

[
gi,i·k̃0,0

, gi,i·k̃0,1
, . . . , gi,i·k̃0,M−1

]T
(28)

are extracted from the sparsely populated SR matrix by:

gi,i·k̃0,m
= Si·k̃0,i+mN . (29)

The refined spectrum for thei-th subband is determined by:

Ỹ
(
ejΩ̃i·k̃0 , n

)
= gi,i·k̃0,0

Y
(
ejΩi , n

)
+ . . . (30)

+ gi,i·k̃0,M−1 Y
(
ejΩi , n− (M − 1)

)
.

Often analysis-synthesis schemes use a frameshift which is
a multitude of the DFT order. For such cases the filter co-
efficientsgi,i·k̃0,m

are either real or imaginary which in turn
results in a further reduction of the computational cost.

Fig. 3 shows a realization of an analysis filterbank with
SR as a post-processor by means of FIR-filters fork̃0 = 2.
The ”auto” FIR filtergi,i·k̃0

applied to refine the original fre-
quency supporting points are depicted in black color.

DFT with
windowing

and
subsampling

+

+

Y
(
ejΩ0, n

)

Y
(
ejΩ1, n

)

Y
(
ejΩ2, n

)

Y
(
ejΩN−1, n

)

g0,0

g0,1

g1,1

g1,2

g1,3

g2,3

g2,4

gN−1,2N−1

Ỹ
(
ejΩ̃0, n

)

Ỹ
(
ejΩ̃1, n

)

Ỹ
(
ejΩ̃2, n

)

Ỹ
(
ejΩ̃3, n

)

Ỹ
(
ejΩ̃4, n

)

Ỹ
(
ejΩ̃2N−1, n

)

y(n)

Fig. 3. Analysis filterbank with SR as a post-processor by
means of FIR-filters for̃k0 = 2.

4.1.2. Computation of additional frequency supporting points

Beside refinement of the original frequency resolution it isal-
so possible to calculate frequency points in between of the
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original spectrum. At a first glance, however, it’s computa-
tionally intensive due to the non-sparseness of the remaining
rows of the SR matrix. In order to reduce the computatio-
nal complexity, one can approximate the non-sparse rows of
the SR matrix by theM largest coefficient pairs. The lar-
gest coefficient pairs correspond exactly to that weightingva-
lues around the desired frequency supporting points of the
short-term spectrum. Analyses have confirmed that the re-
sulting spectrum astonishingly shows low errors even if on-
ly M = 3 ... 5 filter coefficients are used. The complete sy-
stem of spectral refinement fork̃0 = 2 is depicted in Fig. 3.
The refinement of the original frequency resolution is accom-
plished using ”auto” FIR filters (drew in black color) and the
computation of the additional frequency supporting pointsare
performed using ”cross” FIR filters (drew in grey color). The
”cross” as well as the ”auto” filters can be calculated as:

gi,l,m = Sl,i+mN , (31)

and the refined STS,̃Y
(
ejΩ̃l , n

)
, is finally determined by:

Ỹ
(
ejΩ̃l , n

)
(32)

≈





M−1∑
m=0

gl/k̃0,l,m
Y
(
ejΩ̃l/k̃0 , n−m

)
, if l

k̃0
∈ Z,

M−1∑
m=0

gbl/k̃0c,l,m
Y
(
ejΩ̃bl/k̃0c , n−m

)
else,

+
M−1∑
m=0

gdl/k̃0e,l,m
Y
(
ejΩ̃dl/k̃0e , n−m

)
,

whereb c andd e denote rounding to the next smaller and
larger integer, respectively.

4.2. Computational complexity of spectral refinement

After the simplified version of SR and its efficient realiza-
tion were described, as a next stage we analyze its overall
performance. Hence, the computational complexity of a256-
FFT order with additional SR is compared with a512-FFT
order by means of complex multiplications and additions as
shown in Tab. 1. Remarkable to this result is the need of only
few operations for refining the original frequency supporting
points. Using SR as a post processing stage of a basic 256-
FFT only about 2688 complex multiplications and additions
are required while doubling the basic 256-FFT order to 512-
FFT about 4608 operations are needed. It has to be mentio-
ned that in many applications a basic FFT is already available
needed for estimating several parameters, like pitch frequen-
cy used for speech recognition. In such situations, however,
only minor additional operations are required for performing
SR. If it is desired to calculate also additional frequency sup-
porting points as presented in Sec. 4.1.2 only few complex
multiplications and additions have to be added to the refine-
ment system as seen in Tab. 1.

Complex multiplications and additions
for Ñ = 512, N = 256, M = 3 ... 5

Ñ-order FFT Ñ ld(Ñ) = 4608

N-order FFT with N ld(N) +MN/2
spectral refinement (SR) = 2432 ... 2688

N-order FFT with SR N ld(N) +MN/2 +MN
and additional frequencies = 3200 ... 3968

Table 1. Computation complexity of a higher order FFT and
of a basic FFT with additional SR.

5. APPLICATIONS

The SR method can be applied in a variety of audio signal pro-
cessing applications. In this contribution two applications will
be presented in more detail: The principle idea of using SR as
a pre-processing stage for enhanced fundamental frequency
estimation and the employment of SR for echo cancelation to
achieve a higher steady-state convergence.

5.1. Spectral Refinement for Pitch Estimation

A broad variety of different algorithms for estimating the fun-
damental frequency of speech signals exists, like methods ba-
sed on the harmonic product-spectrum [14] or on short-term
auto-correlation [1]. For the following evaluations a method
based on the last-mentioned approach has been employed: At
the first stage the corrupted speech signaly(n) is divided in-
to overlapping blocks and subsequently windowed. Once the
FFT as well as the SR method are applied to the input signal
block according to Fig. 3, the short-term power spectral den-
sity (PSD) is estimated. Applying the IFFT to a normalized
version of the PSD the auto-correlation function (ACF) re-
sults. Performing a maximum search of the ACF in a selected
range of indices, the normalized pitch period is estimated.Fi-
nally, the pitch frequency is obtained using the inverse of the
pitch period. Further details can be found in [10].

To show the performance and the accurateness of the pro-
posed method, the estimated fundamental frequencies without
and with SR at different SNR conditions have been compared
with a clean speech laryngograph database. The reference da-
tabase consists of a multitude of pitch frequencies out of the
interval f̂p(n) ∈ [50Hz, 350Hz]. For the evaluation the cor-
rectness and the false detection have been considered. To ana-
lyze the correctness of the estimated pitch frequencies three
range of values have been defined: the estimated error lies wi-
thin a tolerance range of±3 %, ±10 % and±20 %. False
detection means that the algorithm under test detects a pitch
frequency while no reference pitch is available.

Tab. 2 depicts the correctness of the pitch estimation me-
thod without and with SR for high, medium, and low SNR. A
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Correctness [%]
Accepted

High Mean Lowtolerance
SNR SNR SNR

< 3% 62.1 70.1 47.2
Standard

< 10% 65.1 70.9 48.4method

< 20% 65.5 71.4 49.3

< 3% 82.1 80.3 55.9
Method with SR

< 10% 88.1 85.3 58.2up to 1 kHz

< 20% 88.8 86.2 58.7

< 3% 83.2 80.1 53.4
Method with SR

< 10% 89.8 85.3 56.9up to 3 kHz

< 20% 90.6 86.3 57.5

Table 2. Correctness of estimated fundamental frequencies
without and with SR for different tolerance ranges.

pitch was only detected if the normalized ACF at maximum
lag exceeds a predefined treshold ofp0 = 0.25. Note, that
the refinement was only performed at lower frequencies up to
1 kHz and 3 kHz, respectively. The results show that by app-
lying SR an increase of correctness by about20− 25% (abs.)
at high SNR is achieved, approx.10 − 15% (abs.) at medi-
um SNR, and about8− 10% (abs.) at low SNR. Moreover, it
can be observed that nearly the same performance is achieved
when using SR up to 1 and 3 kHz. Hence, for pitch estima-
tion it is sufficient to refine the input spectrum only at lower
frequencies up to 1 kHz which in turn results in a significant
reduction of the computational complexity.

The measured results for miss detections are listed in
Tab. 3. From the evaluations one can see that the miss detec-

Missdetection [%]

High Mean Low
SNR SNR SNR

Standard method 18.1 11.4 8.6

Method with SR up to 1 kHz 18.2 11.3 8.2

Method with SR up to 3 kHz 17.2 11.4 8.1

Table 3. Miss detection of pith frequency without and with
SR up to 1 kHz and 3 kHz for different SNR’s.

tion rates can nearly be kept constant for all SNR considered
while the correctness rates are increased at the same time.

5.2. Spectral Refinement for Echo Cancellation

The use of echo cancellation by means of adaptive filters of-
fers the possibility of a full-duplex communications. Due to

computational complexity often adaptive filters in the sub-
band domain are used as a digital replica of a loudspeaker-
enclosure-microphone (LEM) system [8].

For estimating the subband echo signal first the micropho-
ne signal as well as the reference signal have to be segmented
into overlapping blocks of appropriate sizes and afterwards
each block is transformed into the frequency domain. Usual-
ly successive segments are overlapping out of the range of
50 − 75%. However, increasing the subsampling rater the
computational load is decreased while at the same time ali-
asing components within subband signals are increased. It is
well known that subband echo cancellation requires nearly
aliasing free subband signals. Therefore, a compromise bet-
ween subsampling and computational cost has to be found.

To overcome a low steady-state convergence of echo can-
cellation at large subsampling rates, the proposed SR method
can be implemented in the microphone as well as in the refe-
rence path. In doing so, the refined reference subband signalis
convolved with an unknown LEM subband impulse response
to estimate the subband echo signal. Afterwards the echo si-
gnal is subtracted from the refined microphone subband signal
to determine the error subband signal for the filter update.

To show the performance of echo cancellation without and
with SR a simulation example is introduced in Fig. 4.
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−35

−30

−25

−20

−15

−10

−5

0

5

Time in seconds

dB

Short−term power before and after echo cancellation

 

 

Microphone
Output without SR
Output with SR

Fig. 4. Performance of echo cancellation without and with
additional SR (white noise signal as excitation)

The black curve shows the short-term power of the exci-
tation signal, whereas the second and third graph depict the
outcome without and with SR (white noise is used as excita-
tion signal, local speech and noise are not considered in this
simulation). As setup for the evaluation a basic FFT of order
N = 256, a subsampling rate ofr = 100, a Hann-window,
and echo cancellation filter of lengthK = 8 at a sampling rate
of fs = 11025Hz are utilized. For the filter update the norma-
lized least mean square (NLMS) algorithm with a step-size of
β = 0.3 has been employed. Experiments have shown that the
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echo reduction performance starts to decrease atr ≥ 90 using
a standard method because of aliasing effects. For the refine-
ment only short FIR filter of orderM = 3 are employed. Fur-
thermore, only the original frequency supporting points ha-
ve been refined, no computation of additional frequency sup-
porting points in between were calculated. Meaning that the
structure depicted in Fig. 3 has been employed except for the
”cross” filters. Moreover, equivalent subband filters have been
employed for each subband channel: (h̃

(µ̃)
k = h̃k). From the

simulation one can observe that using SR about 30 dB echo
attenuation can be achieved which is appropriate for echo can-
cellation. Compared to a standard method without SR a faster
initial convergence and an improved echo attenuation of ap-
prox. 6 dB (after the echo cancellation filter has converged)
are achieved. It has to be noticed that only minor operations
by means of multiplications and additions are added to a stan-
dard method and an insignificant additional delay is inserted
in the signal path.

6. SUMMARY AND OUTLOOK

In this paper a generalized method for spectral refinement ap-
plied as a post-processing stage of an analysis filterbank for
speech signals was presented. At a first stage a general so-
lution how to individually refine subband signals was deri-
ved. Afterwards a computational efficient method for spectral
refinement was proposed based on a linear combination of
weighted subband signal vectors – the refinement procedu-
re can easily be implemented using short FIR-filters in each
subband channel. The SR method is particular suitable for
speech processing systems with already integrated analysis
filterbanks or DFT’s – thus applying SR as a post-processing
specific feature estimation such as pitch frequency or noise
power can further be improved. The calculation of SR intro-
duces an additional delay in the signal which has been kept
low using short FIR filters for the refinement. In this contribu-
tion the SR method has been applied for fundamental frequen-
cy estimation as well as for echo cancellation. Evaluations
demonstrated that pitch frequency estimation was improved
considerably for all considered SNR levels. For pitch estima-
tion only a refinement of the input signal at lower frequencies
(up to 1 kHz) is needed and thus results in a very low compu-
tational complexity. The application of SR for echo cancella-
tion have shown that the echo reduction especially for higher
subsampled systems can be enhanced when utilizing SR.
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